Lớp 1-2-3

Lớp 1

Lớp 2

Vở bài tập

Lớp 3

Vở bài tập

Đề thi

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 6

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp Tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu

*

Công thức, Định nghĩa Toán, Lí, HóaĐường thẳngHình tam giácCác trường hợp tam giác bằng nhauHình thangHình bình hànhHình thoiHình chữ nhật
Trực tâm của tam giác là gì ? Định nghĩa, tính chất trực tâm tam giác chi tiết
Trang trước
Trang sau

•Trực tâm của tam giác là giao điểm của ba đường cao của tam giác đó.

Đang xem: Trực tâm của tam giác là gì

*

Tam giác ABC có ba đường cao là AM, BN, CP. Gọi H là giao điểm của ba đường cao trên thì H là trực tâm của tam giác ABC.

•Tính chất:

-Trong tam giác đều, trọng tâm, trực tâm, điểm cách đều ba cạnh, điểm nằm trong tam giác và cách đều ba cạnh là bốn điểm trùng nhau.

Xem thêm: HợP đÁ»“Ng HếT HạN Cã³ PhảI Gia Hạn Hợp Đồng Là Gì, Gia Hạn Hợp Đồng Lao Động Xác Định Thời Hạn

*

Ví dụ: Cho tam giác ABC cân tại A, đường trung tuyến AM và đường cao BK. Gọi H là giao điểm của AM và BK. Chứng minh rằng CH vuông góc với AB.

Hướng dẫn:

*

Vì tam giác ABC cân tại A nên đường trung tuyến AM cũng là đường cao của tam giác ABC.

Xem thêm:

Ta có H là giao điểm của hai đường cao AM và BK nên H là trực tâm của tam giác ABC

Suy ra CH là đường cao của tam giác ABC

Vậy CH vuông góc với AB.

Giới thiệu kênh Youtube honamphoto.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, honamphoto.com HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 6 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!

Leave a Reply

Your email address will not be published. Required fields are marked *